Exercise Sheet #6

Course Instructor: Ethan Ackelsberg Teaching Assistant: Felipe Hernández

- **P1.** Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space and $X : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ a random variable, i.e., $\forall A \in \mathcal{B}(\mathbb{R}), X^{-1}(A) \in \mathcal{F}$. Prove that the distribution function of $X, F_X : \mathbb{R} \to [0,1]$ defined by $F(x) = \mathbb{P}(X \leq x)$, determines the measure induced by $X, \mathbb{P}_X : \mathcal{B}(\mathbb{R}) \to [0,1]$ defined by $\mathbb{P}_X(A) = \mathbb{P}(X^{-1}(A))$.
- **P2.** Consider $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ where λ is the Lebesgue measure. Let μ be a measure on $\mathcal{B}(\mathbb{R})$ that satisfies the following conditions:
 - i) For all $A \in \mathcal{B}(\mathbb{R})$ and $x \in \mathbb{R}$: $\mu(A) = \mu(A + x)$.
 - ii) $0 < \mu((0,1]) < \infty$.

Show that there exists $\alpha > 0$ such that $\mu = \alpha \lambda$.

- **P3.** In this exercise, we prove that there exists a Lebesgue non-measurable subset of \mathbb{R} . For this, we define an equivalence relation on [0,1) by $x\mathcal{R}y$ if $y-x\in\mathbb{Q}$. By axion of choice, let $E\subseteq[0,1)$ be a set containing exactly one representative of each equivalence class, and for each $t\in\mathbb{Q}\cap[0,1]$ let $E_t=\{x+t \bmod 1\mid x\in E\}\subseteq[0,1)$.
 - (a) Show that the sets $(E_t)_{t\in\mathbb{Q}\cap[0,1]}$ are pairwise disjoint.
 - (b) Show that

$$\bigsqcup_{t \in \mathbb{Q} \cap [0,1]} E_t = [0,1).$$

- (c) Assume by contradiction that E is Lebesgue measurable. Show that for every $t \in \mathbb{Q} \cap [0,1)$, E_t is Lebesgue measurable and $\lambda(E_t) = \lambda(E)$.
- (d) Conclude by arriving to a contradiction.
- **P4.** Consider λ as the Lebesgue measure on \mathbb{R} , and let A be a Lebesgue measurable set. Prove that if $\lambda(A) > 0$, then A contains a non-measurable set.